9,720 research outputs found

    Quasi-Fixed Points and Charge and Colour Breaking in Low Scale Models

    Get PDF
    We show that the current LEP2 lower bound upon the minimal supersymmetric standard model (MSSM) lightest Higgs mass rules out quasi-fixed scenarios for string scales between 10^6 and 10^{11} GeV unless the heaviest stop mass is more than 2 TeV. We consider the implications of the low string scale for charge and colour breaking (CCB) bounds in the MSSM, and demonstrate that CCB bounds from F and D-flat directions are significantly weakened. For scales less than 10^{10} GeV these bounds become merely that degenerate scalar mass squared values are positive at the string scale.Comment: 17 pages, 4 figures. Replacement has added discussion on errors due to alpha_s(MZ) errors, as well as deviations from the quasi-fixed point. Text has been clarifie

    Cosmology of the Next-to-Minimal Supersymmetric Standard Model

    Get PDF
    We discuss the domain wall problem in the Next-to-Minimal Supersymmetric Standard Model, with particular attention to the usual solution of explicit breaking of the discrete symmetry by non-renormalisable operators. This ``solution'' leads to a contradiction between the requirements of cosmology and those of avoiding the destabilisation of the hierarchy.Comment: 6 pages LaTeX, needs sprocl.sty (included at end) Talk presented by P.L. White at Valencia 9

    Brane Gases on K3 and Calabi-Yau Manifolds

    Get PDF
    We initiate the study of Brane Gas Cosmology (BGC) on manifolds with non-trivial holonomy. Such compactifications are required within the context of superstring theory in order to make connections with realistic particle physics. We study the dynamics of brane gases constructed from various string theories on background spaces having a K3 submanifold. The K3 compactifications provide a stepping stone for generalising the model to the case of a full Calabi-Yau three-fold. Duality symmetries are discussed within a cosmological context. Using a duality, we arrive at an N=2 theory in four-dimensions compactified on a Calabi-Yau manifold with SU(3) holonomy. We argue that the Brane Gas model compactified on such spaces maintains the successes of the trivial toroidal compactification while greatly enhancing its connection to particle physics. The initial state of the universe is taken to be a small, hot and dense gas of p-branes near thermal equilibrium. The universe has no initial singularity and the dynamics of string winding modes allow three spatial dimensions to grow large, providing a possible solution to the dimensionality problem of string theory.Comment: 26 pages; Significant revisions: review material truncated; presentation improve

    Evolution and Explosion of Very Massive Primordial Stars

    Full text link
    While the modern stellar IMF shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars (>100 solar masses) may have been abundant in the early universe. Other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. After central helium burning, they encounter the electron-positron pair instability, collapse, and burn oxygen and silicon explosively. If sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. They also eject up to 50 solar masses of radioactive Ni56. Stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair-creation supernovae with regions of stellar mass that are nucleosynthetically sterile. Pair-instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.Comment: 7 pages, including 4 figures; in. proc. MPA/ESO/MPE/USM Joint Astronomy Conference "Lighthouses of the Universe: The Most Luminous Celestial Objects and their use for Cosmology

    Solitonic supersymmetry restoration

    Full text link
    Q-balls are a possible feature of any model with a conserved, global U(1) symmetry and no massless, charged scalars. It is shown that for a broad class of models of metastable supersymmetry breaking they are extremely influential on the vacuum lifetime and make seemingly viable vacua catastrophically short lived. A net charge asymmetry is not required as there is often a significant range of parameter space where statistical fluctuations alone are sufficient. This effect is examined for two supersymmetry breaking scenarios. It is found that models of minimal gauge mediation (which necessarily have a messenger number U(1)) undergo a rapid, supersymmetry restoring phase transition unless the messenger mass is greater than 10^8 GeV. Similarly the ISS model, in the context of direct mediation, quickly decays unless the perturbative superpotential coupling is greater than the Standard Model gauge couplings.Comment: 17 pages, 3 figures, minor comments added, accepted for publication in JHE

    Design of the flutter suppression system for DAST ARW-IR

    Get PDF
    The design of the flutter suppression system for a remotely-piloted research vehicle is described. The modeling of the aeroelastic system, the methodology used to synthesized the control law, the analytical results used to evaluate the control law performance, and ground testing of the flutter suppression system onboard the aircraft are discussed. The major emphasis is on the use of optimal control techniques employed during the synthesis of the control law
    corecore